3.295 \(\int \frac{(e+f x)^2 \cos (c+d x)}{a+b \sin (c+d x)} \, dx\)

Optimal. Leaf size=320 \[ -\frac{2 i f (e+f x) \text{PolyLog}\left (2,\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d^2}-\frac{2 i f (e+f x) \text{PolyLog}\left (2,\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}+a}\right )}{b d^2}+\frac{2 f^2 \text{PolyLog}\left (3,\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d^3}+\frac{2 f^2 \text{PolyLog}\left (3,\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}+a}\right )}{b d^3}+\frac{(e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d}+\frac{(e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}+a}\right )}{b d}-\frac{i (e+f x)^3}{3 b f} \]

[Out]

((-I/3)*(e + f*x)^3)/(b*f) + ((e + f*x)^2*Log[1 - (I*b*E^(I*(c + d*x)))/(a - Sqrt[a^2 - b^2])])/(b*d) + ((e +
f*x)^2*Log[1 - (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])])/(b*d) - ((2*I)*f*(e + f*x)*PolyLog[2, (I*b*E^(I*(
c + d*x)))/(a - Sqrt[a^2 - b^2])])/(b*d^2) - ((2*I)*f*(e + f*x)*PolyLog[2, (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2
 - b^2])])/(b*d^2) + (2*f^2*PolyLog[3, (I*b*E^(I*(c + d*x)))/(a - Sqrt[a^2 - b^2])])/(b*d^3) + (2*f^2*PolyLog[
3, (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])])/(b*d^3)

________________________________________________________________________________________

Rubi [A]  time = 0.512569, antiderivative size = 320, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 5, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.192, Rules used = {4519, 2190, 2531, 2282, 6589} \[ -\frac{2 i f (e+f x) \text{PolyLog}\left (2,\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d^2}-\frac{2 i f (e+f x) \text{PolyLog}\left (2,\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}+a}\right )}{b d^2}+\frac{2 f^2 \text{PolyLog}\left (3,\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d^3}+\frac{2 f^2 \text{PolyLog}\left (3,\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}+a}\right )}{b d^3}+\frac{(e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d}+\frac{(e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}+a}\right )}{b d}-\frac{i (e+f x)^3}{3 b f} \]

Antiderivative was successfully verified.

[In]

Int[((e + f*x)^2*Cos[c + d*x])/(a + b*Sin[c + d*x]),x]

[Out]

((-I/3)*(e + f*x)^3)/(b*f) + ((e + f*x)^2*Log[1 - (I*b*E^(I*(c + d*x)))/(a - Sqrt[a^2 - b^2])])/(b*d) + ((e +
f*x)^2*Log[1 - (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])])/(b*d) - ((2*I)*f*(e + f*x)*PolyLog[2, (I*b*E^(I*(
c + d*x)))/(a - Sqrt[a^2 - b^2])])/(b*d^2) - ((2*I)*f*(e + f*x)*PolyLog[2, (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2
 - b^2])])/(b*d^2) + (2*f^2*PolyLog[3, (I*b*E^(I*(c + d*x)))/(a - Sqrt[a^2 - b^2])])/(b*d^3) + (2*f^2*PolyLog[
3, (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])])/(b*d^3)

Rule 4519

Int[(Cos[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
-Simp[(I*(e + f*x)^(m + 1))/(b*f*(m + 1)), x] + (Int[((e + f*x)^m*E^(I*(c + d*x)))/(a - Rt[a^2 - b^2, 2] - I*b
*E^(I*(c + d*x))), x] + Int[((e + f*x)^m*E^(I*(c + d*x)))/(a + Rt[a^2 - b^2, 2] - I*b*E^(I*(c + d*x))), x]) /;
 FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && PosQ[a^2 - b^2]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps

\begin{align*} \int \frac{(e+f x)^2 \cos (c+d x)}{a+b \sin (c+d x)} \, dx &=-\frac{i (e+f x)^3}{3 b f}+\int \frac{e^{i (c+d x)} (e+f x)^2}{a-\sqrt{a^2-b^2}-i b e^{i (c+d x)}} \, dx+\int \frac{e^{i (c+d x)} (e+f x)^2}{a+\sqrt{a^2-b^2}-i b e^{i (c+d x)}} \, dx\\ &=-\frac{i (e+f x)^3}{3 b f}+\frac{(e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d}+\frac{(e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b d}-\frac{(2 f) \int (e+f x) \log \left (1-\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right ) \, dx}{b d}-\frac{(2 f) \int (e+f x) \log \left (1-\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right ) \, dx}{b d}\\ &=-\frac{i (e+f x)^3}{3 b f}+\frac{(e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d}+\frac{(e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b d}-\frac{2 i f (e+f x) \text{Li}_2\left (\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d^2}-\frac{2 i f (e+f x) \text{Li}_2\left (\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b d^2}+\frac{\left (2 i f^2\right ) \int \text{Li}_2\left (\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right ) \, dx}{b d^2}+\frac{\left (2 i f^2\right ) \int \text{Li}_2\left (\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right ) \, dx}{b d^2}\\ &=-\frac{i (e+f x)^3}{3 b f}+\frac{(e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d}+\frac{(e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b d}-\frac{2 i f (e+f x) \text{Li}_2\left (\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d^2}-\frac{2 i f (e+f x) \text{Li}_2\left (\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b d^2}+\frac{\left (2 f^2\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2\left (\frac{i b x}{a-\sqrt{a^2-b^2}}\right )}{x} \, dx,x,e^{i (c+d x)}\right )}{b d^3}+\frac{\left (2 f^2\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2\left (\frac{i b x}{a+\sqrt{a^2-b^2}}\right )}{x} \, dx,x,e^{i (c+d x)}\right )}{b d^3}\\ &=-\frac{i (e+f x)^3}{3 b f}+\frac{(e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d}+\frac{(e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b d}-\frac{2 i f (e+f x) \text{Li}_2\left (\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d^2}-\frac{2 i f (e+f x) \text{Li}_2\left (\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b d^2}+\frac{2 f^2 \text{Li}_3\left (\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d^3}+\frac{2 f^2 \text{Li}_3\left (\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b d^3}\\ \end{align*}

Mathematica [A]  time = 0.172019, size = 302, normalized size = 0.94 \[ \frac{\frac{6 f \left (f \text{PolyLog}\left (3,\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )-i d (e+f x) \text{PolyLog}\left (2,\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )\right )}{d^3}+\frac{6 f \left (f \text{PolyLog}\left (3,\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}+a}\right )-i d (e+f x) \text{PolyLog}\left (2,\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}+a}\right )\right )}{d^3}+\frac{3 (e+f x)^2 \log \left (1+\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}-a}\right )}{d}+\frac{3 (e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}+a}\right )}{d}-\frac{i (e+f x)^3}{f}}{3 b} \]

Antiderivative was successfully verified.

[In]

Integrate[((e + f*x)^2*Cos[c + d*x])/(a + b*Sin[c + d*x]),x]

[Out]

(((-I)*(e + f*x)^3)/f + (3*(e + f*x)^2*Log[1 + (I*b*E^(I*(c + d*x)))/(-a + Sqrt[a^2 - b^2])])/d + (3*(e + f*x)
^2*Log[1 - (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])])/d + (6*f*((-I)*d*(e + f*x)*PolyLog[2, (I*b*E^(I*(c +
d*x)))/(a - Sqrt[a^2 - b^2])] + f*PolyLog[3, (I*b*E^(I*(c + d*x)))/(a - Sqrt[a^2 - b^2])]))/d^3 + (6*f*((-I)*d
*(e + f*x)*PolyLog[2, (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])] + f*PolyLog[3, (I*b*E^(I*(c + d*x)))/(a + S
qrt[a^2 - b^2])]))/d^3)/(3*b)

________________________________________________________________________________________

Maple [F]  time = 0.716, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( fx+e \right ) ^{2}\cos \left ( dx+c \right ) }{a+b\sin \left ( dx+c \right ) }}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)^2*cos(d*x+c)/(a+b*sin(d*x+c)),x)

[Out]

int((f*x+e)^2*cos(d*x+c)/(a+b*sin(d*x+c)),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^2*cos(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [C]  time = 2.6733, size = 3082, normalized size = 9.63 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^2*cos(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/2*(2*f^2*polylog(3, 1/2*(2*I*a*cos(d*x + c) - 2*a*sin(d*x + c) + 2*(b*cos(d*x + c) + I*b*sin(d*x + c))*sqrt(
-(a^2 - b^2)/b^2))/b) + 2*f^2*polylog(3, 1/2*(2*I*a*cos(d*x + c) - 2*a*sin(d*x + c) - 2*(b*cos(d*x + c) + I*b*
sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2))/b) + 2*f^2*polylog(3, -(I*a*cos(d*x + c) + a*sin(d*x + c) + (b*cos(d*x +
 c) - I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2))/b) + 2*f^2*polylog(3, -(I*a*cos(d*x + c) + a*sin(d*x + c) - (b
*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2))/b) + (2*I*d*f^2*x + 2*I*d*e*f)*dilog(-1/2*(2*I*a*cos
(d*x + c) + 2*a*sin(d*x + c) + 2*(b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2) + 2*b)/b + 1) + (2
*I*d*f^2*x + 2*I*d*e*f)*dilog(-1/2*(2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) - 2*(b*cos(d*x + c) - I*b*sin(d*x +
c))*sqrt(-(a^2 - b^2)/b^2) + 2*b)/b + 1) + (-2*I*d*f^2*x - 2*I*d*e*f)*dilog(-1/2*(-2*I*a*cos(d*x + c) + 2*a*si
n(d*x + c) + 2*(b*cos(d*x + c) + I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2) + 2*b)/b + 1) + (-2*I*d*f^2*x - 2*I*
d*e*f)*dilog(-1/2*(-2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) - 2*(b*cos(d*x + c) + I*b*sin(d*x + c))*sqrt(-(a^2 -
 b^2)/b^2) + 2*b)/b + 1) + (d^2*e^2 - 2*c*d*e*f + c^2*f^2)*log(2*b*cos(d*x + c) + 2*I*b*sin(d*x + c) + 2*b*sqr
t(-(a^2 - b^2)/b^2) + 2*I*a) + (d^2*e^2 - 2*c*d*e*f + c^2*f^2)*log(2*b*cos(d*x + c) - 2*I*b*sin(d*x + c) + 2*b
*sqrt(-(a^2 - b^2)/b^2) - 2*I*a) + (d^2*e^2 - 2*c*d*e*f + c^2*f^2)*log(-2*b*cos(d*x + c) + 2*I*b*sin(d*x + c)
+ 2*b*sqrt(-(a^2 - b^2)/b^2) + 2*I*a) + (d^2*e^2 - 2*c*d*e*f + c^2*f^2)*log(-2*b*cos(d*x + c) - 2*I*b*sin(d*x
+ c) + 2*b*sqrt(-(a^2 - b^2)/b^2) - 2*I*a) + (d^2*f^2*x^2 + 2*d^2*e*f*x + 2*c*d*e*f - c^2*f^2)*log(1/2*(2*I*a*
cos(d*x + c) + 2*a*sin(d*x + c) + 2*(b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2) + 2*b)/b) + (d^
2*f^2*x^2 + 2*d^2*e*f*x + 2*c*d*e*f - c^2*f^2)*log(1/2*(2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) - 2*(b*cos(d*x +
 c) - I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2) + 2*b)/b) + (d^2*f^2*x^2 + 2*d^2*e*f*x + 2*c*d*e*f - c^2*f^2)*l
og(1/2*(-2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) + 2*(b*cos(d*x + c) + I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2)
+ 2*b)/b) + (d^2*f^2*x^2 + 2*d^2*e*f*x + 2*c*d*e*f - c^2*f^2)*log(1/2*(-2*I*a*cos(d*x + c) + 2*a*sin(d*x + c)
- 2*(b*cos(d*x + c) + I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2) + 2*b)/b))/(b*d^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)**2*cos(d*x+c)/(a+b*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (f x + e\right )}^{2} \cos \left (d x + c\right )}{b \sin \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^2*cos(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

integrate((f*x + e)^2*cos(d*x + c)/(b*sin(d*x + c) + a), x)